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A common problem in particle simulations is effective field interpolation. Field interpola-
tion is any method for creating an accurate representation of a given continuous field by a
linear combination of overlapping basis functions. This paper presents two techniques for
field interpolation, based on a radial basis function (RBF) formulation using Gaussians. The
application in mind is vortex methods, where one needs to determine the circulation (or
strength) of individual vortex particles with known position and scale to represent a given
vorticity field. This process is required both to initially discretize a given vorticity field, and
to replace a configuration of particles with another for the purposes of maintaining spatial
accuracy. The first technique presented is formulated as an RBF collocation problem, and
obtains a solution accurately and with excellent algorithmic efficiency by means of a pre-
conditioned iterative method. The preconditioner is a sparse approximation, based on
localization, to the dense coefficient matrix of the RBF system. The second technique uses
approximate solutions to the reverse heat equation, recognizing that the standard regular-
ization used in vortex methods (estimating particle strengths using the local value of vor-
ticity multiplied by particle area/volume) corresponds to a Gaussian blurring of the original
field. A single time step is used, thus avoiding amplification of high frequencies, and accu-
rate solutions are produced using explicit finite difference methods. Computational exper-
iments were performed in two dimensions, demonstrating the accuracy and convergence
of the proposed techniques. Application in three dimensions is straightforward, as radial
basis function interpolation is neutral to dimension, but will require more computational
effort.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Particle and meshfree (or meshless) methods have received great interest in recent years and proven to be very successful
for solving a variety of problems. They have a natural application in problems which are inherently discrete, such as the sim-
ulation of astrophysical systems or the dynamics of molecules or atoms out of equilibrium. In these applications there is no
need for discretization, and the computational particles correspond to the physical objects under study. One method which
originated in the astrophysical field and has found great success is the smoothed particle hydrodynamics (SPH) method. This
method first appears in the literature in the late 1970s, and was reviewed in [23]. The SPH method uses particles as a dis-
cretization technique for a continuum formulation of the problem, and it has been extended to many other applications be-
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yond astrophysics. It joins a variety of other meshfree methods where the particle representation is used as a means of
numerical discretization. Another salient member of this group is the vortex particle method, where a particle representation
of the vorticity field is formulated in a Lagrangian method used to solve the Navier–Stokes equations. The vortex method
traces its origins earlier than SPH, with the regularized vortex particle approach being introduced in [12] but based on
the singular vortex particle method first appearing in the classic work of Rosenhead [28]. An overview of the main compu-
tational and theoretical issues with the vortex method can be found in the book [13], while standard review papers of the
early development of the method are [19] and [20].

The term ‘‘particle method” does not refer to a single algorithm but rather a diverse collection of computational tech-
niques for solving evolution equations. Researchers analyze and develop different techniques for resolving issues related
to the solution of partial differential equations with particles, including capturing diffusion, satisfying boundary conditions,
capturing vortex stretching in three-dimensional flows and effective time-marching schemes for the particles. In this paper,
we examine the problem of representing a field using particles and/or replacing one set of particles with another for the pur-
pose of maintaining accuracy and stability in the overall simulation. This procedure corresponds to the general problem of
finding a set of basis functions with their weights, such that their linear combination is able to reconstruct the field variable
accurately. We will refer to this procedure as particle field interpolation, or simply field interpolation.

When a particle method is used as a numerical discretization of a continuum problem, one represents the field variable as
a linear combination of localized basis functions (the particles). Overlap of the particles is necessary to accurately reconstruct
a continuous field variable, a fact which has been amply recognized in the vortex method literature where convergence re-
sults rely on the overlap condition [7]. In practice, it has been observed that the spatial accuracy in the numerical represen-
tation of the continuous vorticity field using the vortex particles increases exponentially with decreasing overlap ratio,
defined as the distance between particles divided by the characteristic size [5]. In a Lagrangian approach (moving basis func-
tions), the initial particle configuration can become severely strained or sheared, leading to a deterioration of spatial accu-
racy in the continuum representation. Thus, most if not all investigators face the need of remediating configurations of
particles so that the basis functions continue to overlap in space throughout the simulation.

While various investigators have developed techniques for replacing a deformed configuration of particles with one that
is uniform or nearly so, this aspect of particle method simulation is seldom addressed in the literature. Possibly, spatial and
temporal errors have dominated particle calculations and errors induced by the particle redistribution has been of lesser
concern. Currently, vortex methods involving elliptical, deforming basis functions are available, providing fourth-order accu-
racy in space [31]. The accurate replacement of one particle configuration with another acquires greater relevance when
maintaining accuracy in combination with such a method.

A central issue in particle field interpolation is that the associated linear systems of equations are ill-conditioned. In
one of the first attempts to avoid inverting the ill-conditioned system, Beale proposed applying a residual correction
method to interpolation problems with fourth-order kernels, which relies on having square lattices of particles [6]. Com-
putational experiments using Beale’s approach were reported in [11], here using Gaussian kernels on a fixed mesh with
changing values of the core size. The importance of preconditioning in field interpolation was later recognized in [21].
However, tensor-product interpolation is a popular alternative that avoids solving the linear system altogether. In this
method, a disordered set of particles is replaced with a set of uniformly distributed ones by projecting particle weights
(circulation) onto a uniform mesh. The procedure is called remeshing or particle redistribution or re-initialization by dif-
ferent authors. One of its first successful uses was in the simulation of cylinder flow in [18], and the approach has since
been at the heart of many important results with vortex particle methods, such as a recent calculation of aircraft wakes
with billions of particles [10]. Alternative spatial adaptation techniques that have been introduced include the splitting
and merging of particles [29,30]. However, the use of tensor-product interpolations continues to be the state-of-the-
art in vortex methods. Some evidence is available suggesting that remeshing could pose an accuracy limitation on the
overall calculations (experiments in [4] show a jump in the errors upon the first remeshing process), and for that reason
we are interested in the alternatives. One alternative that has been recently proposed and carefully studied [5] is to re-
project the field variable, which in the case of vortex methods is the vorticity, using the particles as interpolation centers.
The technique is based on a radial basis function (RBF) formulation of the problem, but the issue of ill-conditioning was
not investigated.

The motivation of the present work is providing a spatial adaptation technique appropriate for use with fourth-order
viscous vortex methods with elliptically deforming bases [31]. However, the results are general and applicable to any
interpolation problem utilizing Gaussian radial basis functions. The paper begins with an overview of the vortex method,
and an explanation of how the present work advances us toward our goal. In Section 3, we overview some relevant as-
pects of the theory of radial basis function interpolation and issues related to the solution of the ill-posed reverse heat
equation. In Section 4, we present methods of solution and numerical experiments for the field interpolation problem
applied to the vortex particle method. We use mainly two experimental setups: one is a passive scalar streak which
has been deformed by a differentially rotating flow, and evolved using the fourth-order elliptical vortex method [32];
the second is the high-gradient but smooth vortex patch of [22]. These two experimental setups are used to demonstrate
several approaches to field interpolation, including: solving the dense linear system associated with an RBF interpolation
problem using a preconditioned iterative method; and, using the reverse heat equation to deconvolve an initial guess ob-
tained using local vorticity and particle volumes. We end with conclusions and indications of the questions left for future
work.
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2. Vortex methods and representing fields with smooth particles

The vortex method solves the Navier–Stokes equation at constant density in vorticity formulation, namely, the vorticity
transport equation:
Fig. 1.
corresp
@x

@t
þ u � rx ¼ x � ruþ 1

Re
Dx: ð1Þ
In the case of a two-dimensional and inviscid flow the right-hand-side of (1) is zero and the governing equation reduces to
the simple form Dx

Dt ¼ 0, where D
Dt stands for the material derivative. One can immediately see how a Lagrangian approach is

ideal for such a problem: to satisfy this equation it suffices to allow small computational elements of vorticity to follow
material trajectories. Three-dimensional vortex methods have been devised by formulating a particle solution to the vortex
stretching/tilting term, while viscosity has been accounted for in a variety of methods. See [13] for a description of the stan-
dard methods, and [5] for an overview of viscous schemes including the core spreading method that we use.

The discretization of the vorticity is accomplished by representing the continuous field by a summation of particle-type
elements, each consisting of a local distribution of vorticity fr with a particular strength, ci. Thus, the vorticity field is rep-
resented by a linear combination of basis functions, as follows:
xðx; tÞ � xrðx; tÞ ¼
XN

i¼1

ciðtÞfrðx� xiðtÞÞ: ð2Þ
The particles have a characteristic spatial scale, r, and their strength (representing circulation) is vector-valued in 3D and a
scalar in 2D. Many choices have been proposed and used for the local distribution of vorticity, but one of the most common is
the Gaussian:
frðxÞ ¼
1

2pr2 exp
�jxj2

2r2

 !
: ð3Þ
One of the important parameters in the vortex method is the so-called overlap ratio, representing the average distance be-
tween the particles relative to their characteristic scale; we can write the overlap ratio as b ¼ h=r. Proofs of convergence of
the vortex method rely on the assumption b < 1.

Numerical experiments presented in [3] demonstrated how the error of the vortex particle representation decreases
super-exponentially with the overlap value. Examples using Lamb–Oseen vortex distributions demonstrated an error in
the vorticity field of order 10�7 for b ¼ 1 and decreasing further down to machine error at b ¼ 0:7. The plot in Fig. 1 shows
the errors obtained when representing the Lamb–Oseen vorticity field with particles at a fixed particle separation, h, but
varying particle width, r, resulting in a varying overlap ratio. It can be seen how the errors decrease by several orders of
magnitude as the overlap ratio decreases passing through the value b ¼ 1. Thus, maintaining sufficient overlap during the
course of a vortex computation when relative positions are shifting is essential for maintaining accuracy.
Super-exponential dependence of the accuracy of representation with Gaussian particles, with respect to the particle overlap, b ¼ h=r. The test field
onds to a Lamb–Oseen vortex, where the separation h was kept constant, but r was varied each time (thus, the number of particles N is constant).
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One of the remaining issues for ensuring numerical accuracy with the vortex method is the choice of the strengths, ci,
which ensures this accuracy for a given initial condition. Historically, the local distribution function for the particles was
introduced to regularize the formula for velocity as a function of vorticity, or Biot–Savart formula, given by
uðx; tÞ ¼
Z
r� Gð Þðx� x0Þxðx0; tÞdx0 ¼

Z
Kðx� x0Þxðx0; tÞdx0 ¼ ðK �xÞðx; tÞ; ð4Þ
where K ¼ r� G is known as the Biot–Savart kernel, G is the Green’s function for the Poisson equation, and � represents
convolution. For example, in two dimensions the Biot–Savart law is written explicitly as
uðx; tÞ ¼ � 1
2p

Z ðx� x0Þ �xðx0; tÞk̂
jx� x0j2

dx0: ð5Þ
Introducing the discretized vorticity xr for x in the above formula, one obtains a summation over all particles to calculate
the velocity at any evaluation point. In the point vortex method, the local distribution function is a delta function, and thus
the velocity is singular. Perhaps surprisingly, the point vortex method will converge to the Euler equations, even without
smoothing [16]. Nonetheless, the regularization with fr addresses the stiffness problem by smoothing the velocity kernel.

There are two interpretations of the computational representation used by vortex methods. The earlier interpretation is
that the vorticity field is represented as a linear combination of delta functions, and the smoothed kernel allows one to com-
pute an approximate, regular velocity field and avoid stiffness. The modern interpretation that we embrace is that the vor-
ticity field should be represented as a linear combination of smooth basis functions, and that the smoothed kernel is an exact
representation of the induced velocity field. The modern interpretation facilitates a more direct convergence formulation and
the potential for new viscous vortex methods [31], but it restricts the admissible computational vorticity fields to those
which can be represented as a combination of smooth functions.

The historic origin of the smoothing of particle distributions (resulting in the so-called vortex blob method) meant that
vortex method practitioners have seldom looked at the problem of representing the vorticity field with, say, Gaussians, as an
interpolation problem. In fact, the vortex method discretization is equivalent to a radial basis function interpolation problem.
In [5] this fact was exploited to develop a method for spatial adaptation of the particles in a time-marching algorithm using
radial basis function (RBF) interpolation.

The standard approach for initialization of a vortex method calculation has been to identify the smooth particle with an
area (in 2D), and approximate this area to write ci ¼ xiAi. That is, vorticity at the particle center multiplied by the particle
area (or volume in 3D), gives its weight in units of circulation. When initializing particles on a square lattice, thus, the ‘‘stan-
dard initialization” in 2D gives the following simple estimation:
ci ¼ xih
2 ¼ xðxiÞh2

: ð6Þ
This method of initializing the vortex particles incurs in an error called ‘‘smoothing error” or ‘‘regularization error.” It was
recognized early on that one could improve on the choice of ci’s given by (6), for example using an iterative method as in
the circulation processing approach of [6]. We will demonstrate how this error can easily dominate the accuracy of a vortex
method calculation, which often results in workers choosing a much smaller core size r than would really be needed, gen-
erating much larger problem sizes (large N) than necessary.

In fact, finding the particle strengths that best represent the vorticity at the particle locations amounts to solving the fol-
lowing interpolation problem:
xrðxjÞ ¼ xðxjÞ; ð7Þ

xrðxjÞ ¼
XN

i¼1

cifrðxj � xiÞ; ð8Þ
Eq. (7) corresponds to the interpolation conditions, which are satisfied by (8) when solving the linear system of equations on
the particle strengths,
A~c ¼ ~x ð9Þ
with,
Aij ¼ frðxj � xiÞ ð10Þ
The possibility of a more accurate initialization solving the system (9) was recognized in [17], where successive over-relax-
ation (SOR) with under-relaxation was used to initialize calculations of elliptical vortex patches. Despite the successful cal-
culations of [17], the problem of inverting the system (9) is far from being solved. The authors of [13] point out that it is very
much a current research topic (p. 211). The difficulty in solving (9) arises from the fact that the matrix A is full and badly
conditioned, and the size of the problem is very large for any applications of interest (production vortex codes regularly deal
with 105 or 106 particles).

In [5], the RBF interpolation approach was used to re-discretize the vorticity field at intermediate times in a vortex meth-
od calculation, with the goal of preserving overlap despite the Lagrangian deformation of the particles. The method was first



1296 L.A. Barba, L.F. Rossi / Journal of Computational Physics 229 (2010) 1292–1310
programmed in MATLAB and later ported to a parallel version using the PETSc library [2], and in both cases the method of
solution used was the generalized minimal residual method (GMRES). High-accuracy results were demonstrated, but the
behavior of the ill-conditioned system was not investigated.

Recently a new vortex method has been introduced which utilizes elliptically deforming Gaussian particles and thus
achieves fourth-order accuracy in space [31,32]. This method offers the potential of being able to compute highly-deforming
vortex flows with manageable numbers of particles, as the elements naturally adapt to the flow deformations. Truly adaptive
calculations with the elliptical vortex method for indefinite times are possible if a spatial adaptation module is added. One
needs to re-initialize the vorticity field at intermediate times in a simulation to control the aspect ratio of the computational
elements [27]. The elliptical particles, however, preclude the use of standard remeshing schemes using tensor-product for-
mulations, as these rely on an assumption of constant particle volume.

3. Solving global field interpolation for vortex particle representations

In this section, we will develop two techniques for particle field interpolation: preconditioned radial basis function col-
location, and a deconvolution formulated with the reverse heat equation. We will compare these techniques with the com-
mon low-order practice that initializes the particle strengths as ci ¼ xih

2. One common technique that has not been assessed
in this paper is the use of tensor-product formulations with splines-based kernels. In the vortex method community, most
workers use an interpolation kernel introduced for SPH (smoothed particle hydrodynamics) methods in [24], commonly
known as M0

4 interpolation. We do not make direct comparisons with M0
4 interpolants because these methods are not suit-

able for elliptically deforming basis functions (they assume uniform particle geometry, i.e., axisymmetric bases with uniform
radius), nor are they suitable for the projection of a known field onto a set of basis functions (as required in the initialization
of a simulation).

3.1. Field interpolation with preconditioned RBF collocation

The particle discretization of the vorticity in the vortex method corresponds to a radial basis function (RBF) expansion of
the field. Therefore, the initial solution for the particle strengths is equivalent to an RBF interpolation collocation problem, as
illustrated by Eqs. (7) and (8). RBF interpolation was introduced as a tool for solving multivariate scattered data interpolation
problems. There has been a great production of research results in this field, with some excellent books being published in
recent years [8,14].

In this paper, we present a study of field interpolation using RBFs in regards to its accuracy and the behaviour of solution
methods. We start by demonstrating a preconditioner, appropriate for rapidly decaying basis functions such as the Gaussian,
based on a sparse approximation to the full coefficient matrix by localization. The preconditioned iterative solution is effec-
tive at producing convergence to a low tolerance in only a handful of iterations. Its motivation and definition are presented in
this section, while numerical experiments are presented in Section 4.3.

As mentioned, the RBF interpolation problem results in an ill-conditioned linear system with a dense matrix. As such, the
success of an iterative solution method relies entirely on the application of a preconditioner. Although the preconditioning of
sparse linear systems has received significant attention [1,33], this is not the case for dense systems. For completeness, let us
recall the basics of preconditioning. The problem at hand is the solution of a linear system
A~x ¼~b; ð11Þ
whereA ¼ ½aij� is an N � N matrix of coefficients and~b is a right-hand-side vector. For very large values of N, the only feasible
methods of solution are iterative, and the convergence of iterative methods depends critically on the conditioning of A. Pre-
conditioning applies an operator to Eq. (11) to transform the system into another one where the coefficient matrix has im-
proved spectral properties. Applying an implicit left preconditioner M to the system (11) results in:
M�1A~x ¼M�1~b: ð12Þ
The new system (12) of course has the same solution as the original one (11), but it should be easier to solve. One can also
precondition from the right, or perform split preconditioning by transforming the original system from both sides.

An iterative method of solution will converge quickly if the preconditioned system matrix has eigenvalues that are clus-
tered close together. Of course, ifM¼ A, then the eigenvalues of the preconditioned system are all equal to 1, but this is of
no use because transforming the system for preconditioning is as hard as solving it. So, one would expect that a good pre-
conditioner M is in some way an approximation to A.

In our problem of performing field interpolation of vorticity using particles, the system matrix is:
Aij ¼ frðxj � xiÞ ð13Þ
with
frðxÞ ¼
1

2pr2 exp
�jxj2

2r2

 !
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Because of the rapid decay of the Gaussian function, a sparse approximation to A can be constructed by making zero those
elements that correspond to distances jxj � xij larger than a chosen threshold. Therefore, we propose as (implicit) precondi-
tioner the following sparse matrix:
Mij ¼
frðxj � xiÞ if jxj � xij < R;
0 if jxj � xij > R:

�
ð14Þ
The goal is to determine the values of R for which such a preconditioner will be effective in providing fast convergence of an
iterative solution method. If R is small, the sparsity of the preconditioner will be large (few non-zero values). However, the
preconditioner may be ineffective. If R is large, the preconditioner will be less sparse, but it should have a greater chance of
accelerating convergence. Of course, if R is as large as the domain size, the preconditioner is dense and equal to the coeffi-
cient matrix, thus its inversion is as hard as solving the initial system. It is not possible to guarantee a priori that a useful R
value exists that provides sufficient sparsity and effective convergence acceleration. Thus, we investigate this problem
experimentally. In Section 4.3 we will present numerical experiments utilizing RBF interpolation by collocation, with the lin-
ear system being solved by GMRES both without preconditioning and using the preconditioner presented above with various
choices of R.

3.2. Field interpolation with the reverse heat equation

Another approach to determining the unknown circulation values, ci, of a set of particles describing a vorticity field is to
improve upon the simple estimation (6). We note that this simple estimation maps x to a distribution of c’s corresponding to
a blurring of the exact vorticity field. If we let xr refer to the blurred field induced by (6), we see that
xr ¼
XM

i¼1

ci

2pr2 exp � j
~x�~xij2

2r2

 !
�
Z Z

xð~yÞ
2pr2 exp � j

~x�~yj2

2r2

 !
dA: ð15Þ
The approximation arises because we can interpret the RBF interpolant as a Riemann sum for the convolution (15). It is well
known and easy to show that the blurred field on the right is an Oðh2Þ approximation to x. The convolution (15) corresponds
to the solution, xð~x; tÞ, to the unbounded heat equation
@tx ¼ r2x; xð~x;r2=2Þ ¼ xrð~xÞ; ð16Þ
at time T ¼ r2=2. In other words, we associate the field x with a blurred circulation. The circulation itself is not known, thus,
we apply the reverse heat equation to recover it as the initial data leading to this solution. There are two mathematical and
computational issues raised in proposing this technique. First, we need to understand the error in the approximation (15)
and ensure that reversing the heat equation is an appropriate means of improving the accuracy of (6). Once we establish that
(15) is a good estimate, we address the second relevant issue of efficiently reversing the heat equation to improve (6).

The approximation (15) is often taken for granted, but a precise examination is necessary if one is to understand the util-
ity and limitations of a reverse heat equation method. Beginning with (15), we can subdivide the domain into rectilinear re-
gions Di over the support of x. If x does not have compact support, we assume it decays exponentially so that we can
truncate x with spectral accuracy,
Z Z

xð~yÞ
2pr2 exp � j

~x�~yj2

2r2

 !
dA ¼

XM

i¼1

Z Z
Di

xð~yÞ
2pr2 exp � j

~x�~yj2

2r2

 !
dA: ð17Þ
Defining
Fð~x;~yÞ ¼ xð~yÞ
2pr2 exp � j

~x�~yj2

2r2

 !
; ð18Þ
the integrands of (17) can be expanded about their centroids ~yi as,
Fð~x;~yÞ ¼ Fð~x;~yiÞ þ DFð~x;~yiÞ½~y�~yi� þ
1
2

D2Fð~x;~yiÞ½~y�~yi;~y�~yi� þ � � � ; ð19Þ
where DF is the vector of partial derivatives of F with respect to the components of~y and D2F is the matrix of second partial
derivatives of F. Each of these terms is a multilinear form as indicated, and under reasonably weak assumptions such as the
continuity of x; F will be analytic. Inserting (19) into (17), one can integrate the series term by term. For simplicity, we shall
assume the Di’s are squares of width h, but it is easy to perform these calculations for rectangular or other tessellations;
XM

i¼1

Z Z
Di

Fð~x;~yÞd~y ¼
XM

i¼1

Fð~x;~yiÞh2 þ 1
24

h4r2
~y Fð~x;~yiÞ þ � � �

� �
: ð20Þ
The DF term is odd and cancels out when integrated over a symmetric interval. The first term on the right in (20) corresponds
to (6). The next term on the right is the leading-order source of the error in the approximation (15). This error term can be
rewritten as an integral:
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e ¼
XM

i¼1

1
24

h4r2
~yFð~x;~yiÞ

� �
� h2

24

Z Z
r2
~yFð~x;~yÞdA ¼ h2

24

I
ðr~yFð~x;~yÞÞ � n̂dl ð21Þ
where the latter integral is a line integral around the boundary of the domain. We assume that x is at least twice differen-
tiable in the estimate above. The regularity of x has a significant impact on the convergence rate. If x and its derivatives
vanish on the boundary, the entire contribution is zero, and the residual difference between the initial sum and approximate
integral would dominate the expression. What is to stop us from continuing this process indefinitely and crossing out suc-
cessive integrals in the Taylor expansion? Nothing except the regularity of x. If x is not analytic, then the Taylor series
expansion is not valid throughout the domain, and there will be nontrivial contributions to the error from terms correspond-
ing to jumps in the derivatives. Thus, we expect convergence of order ðhpþ2Þ where p is the maximum number of continuous
derivative of x in the domain being interpolated. If x is smooth as in the case of moderate Reynolds number flows, then x is
exponentially small but nonzero near the boundary. In this case, we see that (6) converges exponentially to a Gaussian blur-
ring of the field x. In the two model problems that we explore in this paper, the first (convection–diffusion) is analytic and
the second (vortex patch) is not analytic.

Numerical methods for reversing the heat equation are known to be problematic and the equation is famously ill-posed.
One way to understand the issue is to examine the action of the PDE in the Fourier domain. If
x ¼
Z Z

x̂ð~k; tÞei~k~xd~k; ð22Þ
then the Fourier transform satisfies
@x̂
@t
¼ �j~kj2x̂; x̂ð~k;r2=2Þ ¼ dxrð~xÞ: ð23Þ
In other words, the growth rate of high-frequency modes increases to infinity as the frequency approaches infinity. This
poses a significant challenge if r2j~kj2 is large. However, we shall see that for small values, one can numerically integrate
the reverse heat equation with high accuracy.

The reverse heat equation and shock filtering has a prominent and successful history in deblurring algorithms [26,15]. The
dominant technique when reversing the heat equation is to impose an a priori bound on the solution or its variation as a
penalty function [9,34,25]. Another approach is to introduce numerical diffusion as an additional low-pass filter to regularize
direct solutions (see [15] for example). Unlike image enhancement applications, our goal is not to enhance high frequency
details or other aspects that make image interpretation easier to perform. The goal of field interpolation is to accurately com-
pute x from xr. In the world of image deblurring, this would correspond to producing a low signal-to-noise (SNR) ratio. For
instance, in [15] an algorithm is presented with an SNR of 18.4 which would correspond to a relative error of roughly 1.45%
for a blurred test image.

For the purposes of field interpolation, we assume that the vorticity can be resolved with overlapping Gaussian basis func-
tions of core size r so that r will be smaller than the length-scale of variations in the vorticity field. When this is the case, it is
not necessary to integrate (16) for long time intervals. In fact, we circumvent the stability issues associated with numerically
integrating an ill-posed PDE by taking one step in time. This is justified because the limiting computational parameter is the
core size r. For the reverse heat equation process, the total duration of the integration is T ¼ r2=2, so that spatial resolution is
linked to the duration of the computation. Even though we take only one step in time, the field interpolation is consistent
because the duration of the temporal integration collapses ðT ! 0Þ as we refine the spatial resolution ðr ! 0Þ.

There are many ways to solve simple linear PDEs such as the reverse heat equation. In Section 4.3, numerical experiments
are presented where the reverse heat equation is solved using finite differences. Using an mth order discretization in time
and an nth order discretization in space, we expect an accuracy of OðkmÞ þ OðhnÞ ¼ Oðr2mÞ þ OðrnÞ ¼ Oðrminð2m;nÞÞ when cal-
culating the circulation, where k is the time interval and h is the mesh spacing. Therefore, we expect the error in the induced
vorticity field to be Oðrminð2ðmþ1Þ;nþ2ÞÞ. For the Laplacian, we will use second-, fourth- and sixth-order symmetric finite differ-
ences. Of course, boundary conditions are required. For simplicity of implementation, we use Dirichlet boundary conditions
throughout this paper. Some of the limitations of this choice are discussed in Section 4.4, but we leave a thorough exami-
nation of boundary conditions for future work. For the temporal integration, we will present a low-order demonstration
using Euler’s method and a high-order demonstration using fourth-order Runge–Kutta. In the low-order demonstration,
the procedure is as follows.

1. Select new basis function positions on a regular mesh~xi;j. Here we deviate slightly from our convention of indexing basis
functions sequentially. We represent the new basis function positions with a double index ði; jÞ which also represents
their location on a discrete mesh xi ¼ x0 þ ih; yj ¼ y0 þ jh where h is the mesh spacing and ðx0; y0Þ is the lower left corner
of the grid.

2. Calculate xðxi; yjÞ at the new basis function positions and then calculate the initial circulations cð0Þi;j using (6).
3. Take one step in time to integrate the reverse heat equation.
cð1Þi;j ¼ cð0Þi;j þ
r2

2h2 cð0Þiþ1;j þ cð0Þi�1;j þ cð0Þi;j�1 þ cð0Þi;jþ1 � 4cð0Þi;j

� �
¼ cð0Þi;j þ

1
2b2 cð0Þiþ1;j þ cð0Þi�1;j þ cð0Þi;j�1 þ cð0Þi;jþ1 � 4cð0Þi;j

� �
: ð24Þ
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For this method, m ¼ 1 because we are taking only one step of Euler’s method so we use the local truncation error and n ¼ 2.
Therefore, we expect the scheme to be Oðr4Þ. For boundary constraints, one is free to implement Dirichlet or Neumann con-
ditions. Any of the finite-difference implementations noted above is useful in particle simulations because they are fast, ex-
plicit and require very little memory. Thus, one can easily replace one configuration of basis functions with another without
expending a great deal of time or allocating large amounts of memory. We also note that while we are using a regular mesh,
we are not required to use a rectangular domain. For instance, for initial values of cð0Þ that are very small at some locations,
one is free to exclude them and treat them as zero in (24) so that new particles conform to the support of the field x. In
Section 4.4, we will explore the performance of this technique using a variety of differentiation stencils and time-stepping
schemes.

4. Numerical experiments of field interpolation

4.1. Two model problems

To study the efficacy of the two field interpolation methods suggested, we will use two test fields. The first test field con-
sists of data obtained from a numerical calculation of a convection–diffusion problem, using the elliptical vortex method
[32]. Thus, the field is the superposition of deformed elliptical Gaussian basis functions, with aspect ratio a. The elliptically
deforming vortex particles have been evolved for a number of time steps, at the end of which the greatest aspect ratio is 6.2.
Fig. 2(b) shows the location of the elliptical particles on an area of detail in the original field; as shown, there is adequate
overlap of particles to resolve this computation. The deformation of the basis functions helps maintain this overlap beyond
what would be possible with axisymmetric computations, but at the cost of having highly anisotropic particles (see [32] for
more details of this calculation). In this case, the field is not available as an analytic expression. The example represents the
situation in which a practitioner might reach this point in a calculation and need to interpolate the induced field onto a new
arrangement of basis functions to maintain spatial accuracy.

The second test problem is a circular vortex patch that smoothly transitions from zero to a maximum value; it was used in
Ref. [22] to study vortex axisymmetrization (we will call this test field MMZ to abbreviate). Defining an inner radius Ri and an
outer radius Ro, then, gaxi is a C1 function transitioning from 0 to C, defined as follows:
Fig. 2.
time. T
functio
functio
gaxiðr;Ri;RoÞ ¼ C

1; r 6 Ri;

1� f r�Ri
Ro�Ri

� �
; Ri < r < Ro;

0; r P Ro;

8><>: ð25aÞ

fjðrÞ ¼ exp �j
r

exp
1

r � 1

� �� �
; 0 6 r 6 1 ð25bÞ

j ¼ 1
2

e2 lnð2Þ ð25cÞ
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First test function for field interpolation. The plot on (a) shows the entire field, obtained numerically with the elliptical vortex method after a certain
he plot on (b) depicts the basis functions in the area of detail marked by a rectangle in (a). For the sake of clarity, the ellipses representing basis
ns are drawn with a semi-major axis of ð1=5Þra and a semi-minor axis of ð1=5Þr=a where r is the core size and a2 is the aspect ratio of the basis
ns.
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This test problem presents a smooth, uniform, axisymmetric gradient. We select Ro ¼ 0:95 and Ri ¼ 0:6� 0:95 for most
numerical tests below (unless otherwise noted). The constant C is chosen so that the distribution has unit circulation,R R

gaxi ¼ 1. To express this function as a linear combination of basis functions, one needs to adequately resolve the gradient.
With an analytic expression available, a practitioner interested in using this as initial data would need an effective way to
accurately project it onto a collection of basis functions.
4.2. Numerical parameters

While both the RBF collocation and the reverse heat equation methods solve the same problem, the parameters that con-
trol their behavior and performance differ somewhat. Any field interpolation scheme requires r, the basis shape parameter,
as an input. Similarly, the overlap ratio b ¼ h=r is determined by the requirements of the vortex method itself, since the
overlap ratio has a direct impact on the spatial accuracy of the method over time. Different flow calculations and different
numerical schemes may require different values of b, so this parameter too must be treated as an input to any field inter-
polation method. Unique to our preconditioned RBF collocation is R, the cutoff distance which dictates the sparsity of the
preconditioner. Unique to the reverse heat equation technique are the temporal and spatial convergence qualities of the sol-
ver. In the following experiments, we explore these features and characteristics carefully and report on our findings of their
performance.

Before demonstrating the solution methods that we propose and investigate in this paper, it is worthwhile to discuss the
efficacy of the common method of initialization used in vortex method calculations. This consists of estimating the particle
weights simply as the product of the local vorticity value and the particle area (2D) or volume (3D): ci ¼ xih

d, where d is the
dimension. The convergence rate of this initialization method is Oðh2Þ or Oðr2Þ assuming b remains fixed. Also, it requires
that the particles be located on a uniform, Cartesian mesh. Furthermore, the accuracy of this simple initialization method is
inferior to that of either of the methods described in this paper. Numerical evidence is presented in the following sections.
4.3. Numerical experiments with preconditioned RBF interpolation

The motivation of this work is to progress toward a fully adaptive method by a combination of the fourth-order elliptical
vortex method and a scheme for spatial adaptation of the particles using global field interpolation. As a starting point, we
perform experiments consisting of a static re-projection of the vorticity field obtained after computing a problem with
the elliptical vortex method. The test problem for the first experiment is a streak of vorticity that has been strained in a spiral
due to a background differentially rotating flow, from [32]. We first obtain the vorticity values on a lattice covering 1.2 times
the original bounding box of the elliptical particles. The locations with a vorticity value smaller than a given threshold are
discarded, and axisymmetric vortex particles are laid onto the remaining locations, selecting a value of r and h. The next step
is to solve the linear system for the particle circulation strengths, such that the new set of axisymmetric particles reproduces
the vorticity field of the old set of elliptical particles as accurately as desired.
4.3.1. Experiment #1
With parameters shown in Table 1, the initialization using ci ¼ xih

2 results in a maximum point-wise error in vorticity of
12%, with respect to the maximum vorticity, xmax ¼ 25:9. This indicates that the value of r chosen is rather large and con-
siderable blurring is produced by the regularized particles. However, this is unimportant for a simple proof of concept exper-
iment. To produce a more compact field of particles, locations are discarded where the original vorticity field has a value of
less than the maximum value on the edge of the new bounding box. The resulting number of particles is N ¼ 1956; see Ta-
ble 1 for a summary of the experiment parameters and results. Table 1 also shows the results in terms of the maximum field
interpolation error in the vorticity for the different calculations. The error measure is simply the point-wise difference be-
tween the correct vorticity value and the vorticity obtained by the superposition of the new particles, normalized by the
maximum vorticity:
Table 1
Numerical parameters and results for Experiment #1. The field interpolation error, �, refers to the maximum point-wise vorticity error, normalized by
maximum vorticity.

Parameters Maximum field interpolation error

r ¼ 0:02828, ci ¼ xih
2 ! � ¼ 0:12

h ¼ r, Unpreconditioned GMRES ! � ¼ 0:0004
N ¼ 1956 Preconditioned, R ¼ 3r ! � ¼ 0:0059
GMRES max. iterations, 50 Preconditioned, R ¼ 3:75r ! � ¼ 2:06� 10�9

Restart iterations, 5 Preconditioned, R ¼ 4:5r ! � ¼ 2:17� 10�10

Exit tolerance, 10�10 Preconditioned, R ¼ 6r ! � ¼ 1:18� 10�10
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The different calculations correspond to, first, an un-preconditioned GMRES solution, then, various preconditioned solutions
with different values of R. The un-preconditioned solution exited without converging, and the resulting point-wise error at
the particle locations is shown in Fig. 3(a). We note that the oscillations in the error seen in Fig. 3(a) point to the stability
difficulties of the iterative method for this badly conditioned system. Nevertheless, the un-preconditioned GMRES solution
results in a two-order of magnitude improvement in the maximum vorticity error, compared with the initial guess of
ci ¼ xh2.

The error of the vorticity field at particle locations after the preconditioned solutions is shown in Fig. 3(b) and (c), for two
choices of R which proved effective. Fig. 3(d) shows the relative residual norm within iterations; it can be seen that only two
or three iterations were necessary for convergence (depending on the choice of R, as shown). The nonzero patterns of two
preconditioning matrices are shown in Fig. 4. With R ¼ 3, which was not an effective preconditioner, the sparsity is 1.2%
non-zero values; with R ¼ 6, there are 4.2% non-zero values. We looked at the conditioning of the resulting linear system
matrices using the rcond() function of MATLAB. This function returns an estimate of the reciprocal of the condition number,
so values close to zero indicate a badly-conditioned matrix, and values close to 1 indicate a well-conditioned matrix. The
original coefficient matrix A returns a value of rcond equal to 2:13� 10�4, while the value of this estimate for M�1A is
4:76� 10�4 with R ¼ 3r (clearly no improvement) and 0.999 with R ¼ 6r.

4.3.2. Experiment #2
This test uses the MMZ vortex with the parameters given in Section 4.1 for the initial vorticity distribution. We place vor-

tex particles on the nodes of a lattice of 2n þ 1 divisions in each direction, covering the ½�1;1� � ½�1;1� domain. We use n ¼ 6,
Results for Experiment #1. (a) Error in the total induced vorticity at the particle locations after solving for particle weights using un-preconditioned
. (b) Error after solving the preconditioned GMRES system, as described in the text, using the sparse approximation preconditioner with R ¼ 4:5r,
with R ¼ 6r. (d) Relative residual norm in the GMRES iterations, calculated in MATLAB as norm(b-A*x)/norm(b), for the different cases described in

t.
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which results in N ¼ 4225 particles with r ¼ 0:03125; see Table 2 for a summary of the experiment parameters and results.
The maximum error in vorticity when using the initial c estimate is Oð10�2Þ. Using the full coefficient matrix in a GMRES
solution results in a reduction of the maximum vorticity error from Oð10�2Þ to Oð10�5Þ; the resulting point-wise vorticity
error is plotted in Fig. 5(b). In other words, 50 iterations of GMRES improve on the initial guess for c, providing three orders
of magnitude more accuracy in the discretized vorticity. However, it can be seen in Fig. 5(e) that GMRES is stagnating. Inter-
estingly, using the sparse approximation of A as coefficient matrix in the GMRES calculation (instead of as a preconditioner)
gives results which are of similar accuracy as the un-preconditioned GMRES with the full matrix. The values of the norm of
the residual vector in the GMRES iterations lie practically on top of each other: the dots in Fig. 5(e) correspond to the sparse
approximation used as coefficient matrix, while the open circles correspond to the un-preconditioned GMRES with the full
matrix. Moreover, the difference in the solutions, i.e., the values of c, is very small. The take-home message is: solving the
sparse approximate linear system, obtained by neglecting the long-range effects of the Gaussian basis function, will provide
an immediate improvement over the simple estimation ci ¼ xih

2 which is used so often.
We now study the mesh effects observed on the scatter plot of vorticity errors in Fig. 5(b), corresponding to an un-pre-

conditioned GMRES solution. To be precise, we want to confirm that the zones of larger error seen on Fig. 5(b) exhibiting
four-fold symmetry are, in fact, mesh effects. To do this, we have performed a similar experiment, with the difference that
the collocation points for the vortex particles lie on the nodes of a triangular lattice. For a similar initialization as in the
square lattice, where the ½�1; 1�2 domain is divided by 2n þ 1 segments on each direc